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a Département de Mathématique, Université Catholique de Louvain, Chemin du cyclotron, 2, 1348 Louvain-La-Neuve, Belgium
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Abstract

Using symmetric space techniques, we show that closed orbits of Iwasawa subgroups of SO(2, l − 1) naturally define the
singularity of a black hole causal structure in anti-de Sitter spaces in l ≥ 3 dimensions. In particular, we recover for l = 3 the
non-rotating massive BTZ black hole. The method presented here is very simple and in principle generalizable to any semi-simple
symmetric space.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

From a geometric point of view, a black hole is the data of a time orientable pseudo-Riemannian manifold M
together with a subset S ⊂ M called a singularity in such a way that the whole manifold is divided into two parts:
the interior and the exterior of the black hole. A point is said to be interior if all future geodesics through the point
have a non-empty intersection with the singularity. A point is exterior if it is not interior. An important subset of the
space is the horizon: the boundary between these two parts.

Most black hole singularities usually emerge from metric considerations: a singularity corresponds to the set of
points where a metric invariant diverges. This is however not always the case, as shown for example in the BTZ
black holes [5,4]. The latter are obtained as quotients of three-dimensional anti-de Sitter space (AdS3), identified
with the (universal covering of the) group manifold SL2(R), under the action of particular subgroups of its isometry
group. Regions where the orbits of the identification subgroup are time-like are excluded from the original space
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in order to avoid closed time-like curves. The singularity then corresponds to the region where the identifications
become light-like, and it can be shown that the resulting space is indeed a black hole. It was further noticed [11,
8–10] that for a particular subclass of BTZ black holes, the non-rotating massive ones, singularity and horizons have
a simple group-theoretical interpretation: they correspond to unions of minimal parabolic (solvable) subgroups of
SL2(R), and their translated. It is worth remarking that seeing SL2(R) as the homogeneous space SO(2, 2)/SO(2, 1),
the singularity can be identified with the closed orbits of minimal parabolic subgroups of the isometry group
SO(2, 2) ∼ (SL2(R) × SL2(R))/Z2. This type of homogeneous space furthermore belongs to the general class
of causal symmetric spaces (for a definition and examples, see [12,14,17]).

This observation motivates the following definition:

Definition 1. A causal solvable symmetric black hole is a causal symmetric space where the closed orbits of minimal
parabolic subgroups of its isometry group define a black hole singularity.

In this situation, the black hole causal structure is thus completely determined by the action of a solvable group. This
observation gives prominence to potential embeddings of these spaces in the framework of noncommutative geometry,
in defining noncommutative causal black holes (see also [9]) through the existence of universal deformation formulae
for solvable group actions which have been obtained in the context of WKB quantization of symplectic symmetric
spaces [6,7].

Non-rotating massive BTZ black holes turn out to enter the class of causal symmetric solvable black holes. The
purpose of this paper is to generalize known results about the three-dimensional case to anti-de Sitter spaces of
arbitrary dimension, in proving the following theorem:

Theorem 2. For all l ≥ 3, anti-de Sitter space in l dimensions, seen as the symmetric space SO(2, l−1)/SO(1, l−1),
becomes a causal symmetric solvable black hole, as defined above, when closed orbits of a minimal parabolic
subgroup of SO(2, l − 1) and its Cartan conjugate are said to be singular.

This paper intends to prove this theorem. It could be interesting to relate this construction to previous ones giving
rise to black holes in AdS spaces; see [13,18,3,2,1,15].

2. Symmetric structure

For the sake of notational simplicity, we put G = SO(2, l − 1) and H = SO(1, l − 1); our space of interest is
AdSl = G/H . The equivalence class of g ∈ G is denoted by [g] and ϑ = [e]. The anti-de Sitter space can be seen as
the surface

M ≡ u2
+ t2
− x2

− y2
− x2

3 − · · · − x2
l−1 = 1

embedded in R2,l−1.
When H is the SO(1, l − 1) subgroup of SO(2, l − 1) which leaves unchanged the vector (1, 0, . . . , 0) ∈ R2,l−1,

the isomorphism is given by

[g] → g ·


1
0
...

0


where the dot means the usual matrix time vector product in Rl+1. The Lie algebras of G and H will be denoted by G
andH respectively. A Cartan involution θ : G → G gives rise to a Cartan decomposition

G = K⊕ P

and an involutive automorphism σ = id|H ⊕ (−id)|Q to a reductive symmetric space decomposition

G = H⊕Q
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with

[H,H] ⊂ H, [H,Q] ⊂ Q, [Q,Q] ⊂ H.

We choose them in such a way that [σ, θ] = 0.
We now consider Iwasawa decompositionsH = AH ⊕NH ⊕KH and G = A⊕N ⊕K taken in such a way that

AH ⊂ A and NH ⊂ N . We denote by A, N , K , AH , NH and K H the analytic connected subgroups of G whose Lie
algebras are A, N , K, AH, NH, and KH respectively. We denote by N the conjugate by θ of N .

The subgroups R ≡ AN and R ≡ AN are minimal parabolic (solvable) subgroups of G, as mentioned in
Definition 1. The closed orbits of these two groups define the singularity.

3. Causal structure and black hole existence

Definition 3. A light ray is a light-like geodesic.

Lemma 4. Let E be a nilpotent element in Q, and let π : G → G/H be the canonical projection; then a light ray
through [g] ∈ AdSl has the form

s(t) = π
(

ge−tAd(k)E
)

(1)

for a certain k ∈ K H .

Proof. The general form

s(t) = π
(

et X
)

is proven in Theorem 3.2 of chapter XI in [16].
Any vector of the form Ad(k)E has (Killing) zero norm because the trace of a nilpotent matrix vanishes. Now

it is easy to see that the only nilpotent matrices in Q are of the form q0 + qi for a certain i . Then Ad(k)E =
q0 + w1q1 + · · · + wl−1ql−1. From explicit computation given in the Appendix, Ad(k)E is a generic zero normed
vector in Q; see Eq. (A.8). �

Points s(t) with t ∈ R+ are said to lie on future-directed light rays issued from g.

3.1. Search for closed R-orbits

Let us start this section by computing the closed orbits of the action of AN and AN on AdSl . In order to see if
x = [g] ∈ M lies in a closed orbit of AN, we “compare” the basis {dπd Lgqi } of Tx M and the space spanned by
the fundamental vectors of the action. If these two spaces are the same, then x belongs to an open orbit (because a
submanifold is open if and only if it has the same dimension as the main manifold). This idea is precisely contained
in the following proposition.

Proposition 5. If R is a subgroup of G with Lie algebra R, then the orbit R · ϑ is open in G/H if and only if the
projection pr : R→ Q is surjective.

In order to check the openness of the R-orbit of [g], we look at the openness of the Ad(g−1)R-orbit of ϑ using the
proposition.

A great simplification is possible. The AN-orbits are trivially AN-invariant. So the K part of [g] = ank alone fixes
the orbit to which [g] belongs. In the explicit parametrization of K , we know that the SO(n) part is “killed” by the
quotient with respect to SO(1, n). Thus we are left with at most one AN-orbit for each element in SO(2). Computations
using Proposition 5 show that the closed orbits are given by

S = {±[AN ],±[AN ]}. (2)
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3.2. More about the light cone

Lemma 4 claims that if E is nilpotent in Q, then {Ad(k)E}k∈K H is the set of all the light-like vectors in
T[ϑ]AdSl ' Q. So we define the future light cone of ϑ by

C+
[ϑ] = {π(e−tAd(k)E )} t∈R+

k∈K H

and that of a general element [g] ∈ AdSl is obtained by the (isometric) action of g thereon:

C+π(g) = {π(ge−tAd(k)E )} t∈R+
k∈K H

. (3)

The denomination “future” refers to the fact that it only contains positive t . Past light cones correspond to negative t .
It should be noted that this definition is independent of the choice of the representative g in the class π(g) because,
for any h ∈ H , π(ghe−tAd(k)E ) = π(ghe−tAd(k)E h−1) which is simply a reparametrization in K H .

3.3. Computation of the singularity

We here explicitly use the description of AdSl using the fundamental (defining) representation of SO(2, n− 1), i.e.
in terms of the embedding coordinates (u, t, x, y, x3, . . . , xl−1) ∈ R2,l−1, and the choices of generators related in the
Appendix.

Proposition 6. In terms of the embedding of AdSl in R2,l−1, the closed orbits of AN ⊂ SO(2, l − 1) are located at
y − t = 0. Similarly, the closed orbits of AN correspond to y + t = 0. In other words, the equation

t2
− y2

= 0 (4)

describes the singularity S = SAN ∪SAN .

Proof. The different fundamental vector fields of the AN action can be computed using X∗
[g] = −Xg ·ϑ . For example,

in AdS3,

M∗
[g] =


0 −1 0 1
1 0 −1 0
0 −1 0 1
1 0 −1 0




u
t
x
y

 =

−t + y
u − x
−t + y
u − x


= (y − t)∂u + (u − x)∂t + (y − t)∂x + (u − x)∂y .

The full results are

J ∗1 = −y∂t − t∂y (5a)

J ∗2 = −x∂u − u∂x (5b)

M∗ = (y − t)∂u + (u − x)∂t + (y − t)∂x + (u − x)∂y (5c)

L∗ = (y − t)∂u + (u + x)∂t + (t − y)∂x + (u + x)∂y (5d)

W ∗i = −xi∂t − xi∂y + (y − t)∂i (5e)

V ∗j = −x j∂u − x j∂x + (x − u)∂ j , i, j = 3, . . . , l − 1. (5f)

First consider points satisfying t − y = 0. It is clear that, at these points, the l vectors J ∗1 , M∗, L∗ and W ∗i are linearly
dependent. Then, there are at most l − 1 linearly independent vectors amongst the 2(l − 1) vectors (5); thus the points
belong to a closed orbit.

We now show that a point with t − y 6= 0 belongs to an open orbit of AN. It is easy to see that J ∗1 , L∗ and M∗ are
three linearly independent vectors. The vectors V ∗i give us l − 3 more. Then they span an l-dimensional space.

The same can be done with the closed orbits of AN . The result is that a point belongs to a closed orbit of AN if
and only if t + y = 0. �
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For the three-dimensional case, it was shown in [4,11] that the non-rotating BTZ black hole singularity is precisely
given by Eq. (4). Hence, the following is a particular case of Theorem 2:

Corollary 7. The non-rotating BTZ black hole is a causal symmetric solvable black hole.

3.4. Existence of a horizon

We first consider points of the form K · ϑ , which are parametrized by an angle µ. Up to the choice of this
parametrization, a light-like geodesic through µ is given by

K · e−sAd(k)E
· ϑ (6)

with k ∈ SO(l − 1) and s ∈ R.
This geodesic reaches SAN and SAN for values sAN and sAN of the affine parameter, given by

sAN =
sin µ

cos µ− cos α
, and sAN =

sin µ

cos µ+ cos α
(7)

where cos α is the w2 element of the matrix in (A.8) (−1 ≤ w2 ≤ 1).
Because the part sin µ = 0 is SAN , we may restrict ourselves to the open connected domain of AdSl given by

sin µ > 0. More precisely, sin µ = 0 is the equation of SAN in the ANK decomposition. In the same way, SAN is
given by sin µ′ = 0 in the AN K decomposition. In order to escape the singularity, the point µ needs sAN, sAN < 0. It
is only possible to find directions (i.e. an angle α) which respect this condition when cos µ < 0. So the point cos µ = 0
is one point of the horizon.

3.5. A characterization of the horizon

Let D[g] be the set of light-like directions (vectors in SO(n)) for which the point [g] falls into SAN . Similarly,
D[g] is the set of directions for which it falls into SAN . It is actually possible to express D in terms of D. Indeed

k ∈ D[g] iff π(getk·E ) ∈ SAN
iff π(θ(g)θ(etk·E1)) ∈ SAN
iff θ(k) ∈ D(θ [g])
iff k ∈ (D(θ [g]))θ .

(8)

So

D[g] = (Dθ [g])θ (9)

where the definition of kθ is

θ(Ad(k)E) = Ad(kθ )E .

This definition is possible because θ is an inner automorphism.
It is easy to see that θ changes the sign of the spatial part of k, i.e. changes wi →−wi .
How do we express the condition g ∈ H in terms of D[g]? The condition for being in the black hole is D[g] ∪

D[g] = SO(n). If the complementary of D[g] ∪ D[g] has an interior (i.e. if it contains an open subset), then by conti-
nuity the complementary D[g′] ∪ D[g′] has also an interior for all [g′] near [g]. In this case, [g] cannot belong to the
horizon. So a characterization of H is the fact that the boundary of D[g] and D[g] coincide. Eq. (9) shows that H is
θ -invariant.

We can explicitly express D[µ] for µ ∈ SO(2) by examining Eq. (7). Let us write w2 instead of cos α. The set
D[µ] is the set of w2 ∈ [−1, 1] such that cos µ− w2 > 0:

D[µ] = [−1, cos µ[. (10)

So in order for [µ] to belong to H , it must satisfy

D[θ ]θ = [−1, cos µ′[θ=] − cos µ′, 1].
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Consequently, if µ is the K component of g in the ANK decomposition and µ′ that of θu, then we can describe the
horizon by

cos µ = − cos µ′. (11)
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Appendix. Explicit matrix choices

The first choice is to parametrize SO(2, n) and SO(1, n) in such a way that the latter leaves unchanged the vector
(1, 0, 0, . . .). Then

H = so(1, n) 


0 0
0 0

(
· · · 0 · · ·
← vt

→

)


... ↑

0 v
... ↓

 B

 (A.1)

where v is n × 1 and B is skew symmetric n × n. When we speak about so(n), we usually refer to the B part ofH. A
complementary space Q such that [H,Q] ⊂ Q is given by

Q 


0 a
−a 0

(
← wt

→

· · · 0 · · ·

)
↑

...

w 0

↓
...

 0

 . (A.2)

We consider the involutive automorphism σ = idH ⊕ (−id)Q and the corresponding symmetric space structure on G.
As a basis of Q, we choose q0 as the 2 × 2 antisymmetric upper left square and qi as those obtained with w full of
zeros apart from a 1 as the i th component. Next we choice the Cartan involution θ(X) = −X t which gives rise to a
Cartan decomposition

G = K⊕ P.

The latter choice is made in such a way that [σ, θ] = 0. It can be computed, but it is not astonishing that the compact
part K is made up of “true” rotations while P contains the boost. So

K =
(

so(2)

so(n)

)
,

where elements of SO(2) are represented as(
cos µ sin µ

− sin µ cos µ

)
.

A common abuse of notation in the text is to identify the angle µ with the element of SO(2) itself.
In order to build an Iwasawa decomposition, one has to choose a maximal abelian subalgebra A of P . Since

rotations are in K, they must be boosts, and the fact that there are only two time-like directions restricts A to a two-
dimensional algebra. Up to reparametrization, it is thus generated by u∂x + x∂u and t∂y + y∂t . Our matrix choices
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are

J1 =


0

0 0 0 1
0
1

 ∈ H, and J2 = q1 =


0 0 1 0
0
1
0

 ∈ Q.

From here, we have to build root spaces. There still remain a lot of arbitrary choices — among them, the positivity
notion on the dual space A∗. An element X in G(a,b) fulfills ad(X)J1 = a J1 and ad(X)J2 = bJ2. The symbol Ei j
denotes the matrix full of zeros with a 1 as the component i j . The results are

G(0,0)  


x 0
0 y

x 0
0 y

D

 , (A.3)

where D ∈ M(n−2)×(n−2) is skew symmetric,

G(1,0)  Wi = E2i + E4i + Ei2 − Ei4, (A.4a)

G(−1,0)  Yi = −E2i + E4i − Ei2 − Ei4, (A.4b)

G(0,1)  Vi = E1i + E3i + Ei1 − Ei3, (A.4c)

G(0,−1)  X i = −E1i + E3i − Ei1 − Ei3 (A.4d)

with i : 5→ n + 2 and

G(1,1)  M =


0 1 0 −1
−1 0 1 0
0 1 0 −1
−1 0 1 0

 , G(1,−1)  L =


0 1 0 −1
−1 0 −1 0
0 −1 0 1
−1 0 −1 0

 , (A.5)

G(−1,1)  N =


0 1 0 1
−1 0 1 0
0 1 0 1
1 0 −1 0

 , G(−1,−1)  F =


0 1 0 1
−1 0 −1 0
0 −1 0 −1
1 0 1 0

 . (A.6)

The choice of positivity is

N = {Vi , W j , M, L}. (A.7)

The following result is important in the computation of the light cones: if k ∈ SO(n), then the choice E = q0 + q2
of the nilpotent element in Q gives

Ad(k)E =


0 1 w1 w2 . . .

−1
w1
w2
...

 (A.8)

where the elements wi are restricted by the condition
∑l−1

i=1 w2
i = 1.
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